# Nonionic Surfactant Properties of Methoxypolyoxyethylene Dodecanoate Compared with Polyoxyethylene Dodecylether

I. Hama\*, M. Sakaki, and H. Sasamoto

Lion Corp., Tokyo, Japan

**ABSTRACT:** Nonionic surfactant properties of methoxypolyoxyethylene dodecanoate  $[C_{12}$ -EFME;  $C_{11}H_{23}CO-(OCH_2CH_2)_nCH_3]$  with varying ethylene oxide (EO) adduct distributions were compared with those of polyoxyethylene dodecylether  $[C_{12}$ -alcohol ethoxylate (AE);  $C_{12}H_{25}O(CH_2CH_2O)_nH]$ . The gelling region of  $C_{12}$ -EFME was much smaller than that of  $C_{12}$ -AE due to the effects of the ester bond and the terminal methyl group. When the EO adduct distribution of EFME is narrowed, the cloud point and the ability to lower interfacial tension do not change appreciably. Other effects of narrow distribution on EFME performance include a decrease in the gellation region and better foam breaking and wetting. *JAOCS 74*, 829–835 (1997).

**KEY WORDS:** Alcohol ethoxylate, broad ethylene oxide adduct distribution, ethoxylated fatty methyl ester, ethylene oxide, foam breaking, foaming, gelling region, narrow ethylene oxide adduct distribution, phase diagram, wettability.

We have demonstrated that ethylene oxide (EO) can be directly inserted into fatty methyl ester by using Al-Mg composite oxide catalysts (1,2). The EO adduct distribution can be made narrower by modification of the catalyst (3). Moreover, we concluded that methoxypolyoxyethylene dodecanoate ( $C_{12}$ -EFME = ethoxylated fatty methyl ester) was most suitable as a detergent for household products. This conclusion was a result of detailed studies of surfactant properties related to the combination of alkyl chainlength and polyoxyethylene chainlength of various ethoxylated fatty methyl esters (4). Based upon the abovementioned results, this study clarifies the differences between EFME and alcohol ethoxylates (AE) by comparing surfactant properties of C12-EFME with different EO adduct distribution (narrow C12-EFME, broad  $C_{12}$ -EFME) and  $C_{12}$ -AE ( $C_{12}$ -NRE = narrow-range ethoxylate,  $C_{12}$ -BRE = broad-range ethoxylate).

## **EXPERIMENTAL PROCEDURES**

*Materials; EFME.*  $C_{12}$ -EFME with narrow EO adduct distribution and broad  $C_{12}$ -EFME were synthesized from methyl dodecanoate (Paster M12; Lion Corp., Tokyo, Japan) and EO

(Mitsubishi Chemicals, Tokyo, Japan) by the direct ethoxylation method described in our previous paper (3). Figure 1 shows EO adduct distribution of both EFME products as measured by high-performance liquid chromatography (HPLC) under the following conditions: Zorbax C8 column (4.6 mm × 250 mm; Du Pont, Boston, MA); eluent,  $CH_3CN/H_2O =$ 60:40; ultraviolet detector (SPD-10A; Shimadzu, Kyoto, Japan); wavelength, 220 nm.

*AE.*  $C_{12}$ -NRE with narrow EO adduct distribution was synthesized from Conol 20P (Shin-nihon Rika, Osaka, Japan) by the method of Nakamura *et al.* (5). A commercially available  $C_{12}$ -BRE with broad EO adduct distribution (EMALEX series, Nihon Emulsion, Tokyo, Japan) was used. Figure 2 shows the EO adduct distributions of NRE and BRE as measured under the following HPLC conditions: same column as for EFME; same eluent as for EFME; infrared detector (RID-6A; Shimadzu).

Table 1 shows all ethoxylate samples used for evaluation. In our previous paper (4),  $C_{12}$ -EFME with approximately 60



**FIG. 1.** Ethylene oxide (EO) adduct distributions of  $C_{12}$ -ethoxylated fatty methyl ester (EFME) (POE 6) samples.

<sup>\*</sup>To whom correspondence should be addressed at Lion Corporation, Process Development Research Center, Hirai 7-13-12, Edogawa-ku, Tokyo 132, Japan. E-mail: hamai@lion.co.jp.



**FIG. 2.** EO adduct distributions of  $C_{12}$ -alcohol ethoxylate (AE) (POE 7) samples; BRE, broad-range ethoxylate; NRE, narrow-range ethoxylate. See Figure 1 for other abbreviation.

to 70 wt% EO (average EO adduct number 7 to 11) is most suitable for a base surfactant for household detergents. Therefore, we chose ethoxylates with 6 to 15 EO units (average) as samples for this study.

*Cloud point.* Cloud points of 1% aqueous solutions were measured.

*Phase diagram.* Phase diagrams were measured by the method described in our previous paper (6). Various compositions of surfactant and water were sealed in glass tubes. Each phase at the prescribed temperature was confirmed by using an optical microscope with crossed polarizers (Type 13H; Olympus Co. Ltd., Tokyo, Japan). The narrow C<sub>12</sub>-EFME used here was obtained by distillation of broad C<sub>12</sub>-EFME to give a product with about the same EO adduct distribution as the narrow C<sub>12</sub>-EFME synthesized by the direct ethoxylation. Phase diagrams of narrow C<sub>12</sub>-EFME (distillate) and broad C<sub>12</sub>-EFME were compared to study the effect of EO adduct distribution. Then, a comparison between narrow C<sub>12</sub>-EFME and C<sub>12</sub>-NRE was made to study the difference between EFME and AE.

#### TABLE 1 Evaluated Samples<sup>a</sup>

| 6 7 8 9 10 11 12 1   Narrow C <sub>12</sub> -EFME O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O |                             | Average EO adduct number (POE) |   |   |   |    |    |    |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------|---|---|---|----|----|----|----|
| Narrow C <sub>12</sub> -EFME O O O O                                                                                                                                                                                                              |                             | 6                              | 7 | 8 | 9 | 10 | 11 | 12 | 15 |
|                                                                                                                                                                                                                                                   | arrow C <sub>12</sub> -EFME | 0                              |   | 0 | 0 |    |    | 0  | 0  |
| Broad C <sub>12</sub> -EFME O O O                                                                                                                                                                                                                 | oad C <sub>12</sub> -EFME   | 0                              |   | 0 |   |    | 0  |    | 0  |
| $C_{12}$ -NRE O O O O                                                                                                                                                                                                                             | -NRE                        |                                | 0 |   | 0 |    |    | 0  | 0  |
| $C_{12}^{-1}$ -BRE O O O O O                                                                                                                                                                                                                      | 2-BRE                       |                                | 0 |   | 0 | 0  |    | 0  | 0  |

<sup>a</sup>EFME, ethoxylated fatty methyl ester; NRE, narrow-range ethoxylate; EO, ethylene oxide; POE, polyoxyethylene; BRE, broad-range ethoxylate.

Foaming ability and foam stability. Foaming and foam stability of 0.1% aqueous solutions of each sample at 25°C were measured by the Ross-Miles method (7). Foam stability was calculated based upon changes of foam height from just after dropping (t = 0) to 5 min later (t = 5) (4).

Surface tension lowering. Surface tensions of aqueous solutions at 25°C were measured by an FACE surface tensiometer CBVP-A3 (Kyowa Surface Science, Kyoto, Japan). Critical micelle concentration (CMC) and surface tension at the CMC ( $\gamma_{CMC}$ ) were calculated from these data.

Interfacial tension lowering. Interfacial tensions of 0.1% aqueous solutions under *n*-decane, oleic acid, and triolein at 25°C were measured by the same apparatus as used for surface tension.

*Wettability*. Wetting times for 0.1% aqueous surfactant solutions were measured at 25°C by the Draves method. Wool (100%) felt ( $3 \times 20$  cm) (Japan Wool Textile, Osaka, Japan) was used as test cloth.

*Solubilization*. Solubilization of Yellow OB dye (Tokyo Kasei, Tokyo, Japan) by 0.1% aqueous solutions was evaluated at 25°C by the same method as Nishikido (8).

### **RESULTS AND DISCUSSION**

*Cloud point*. Figure 3 shows the results of cloud point measurements. Because the terminal end of the EO chain is blocked by a methyl group, EFME shows lower water solubility and has a lower cloud point than AE. The cloud point of  $C_{12}$ -NRE, which has a narrow EO adduct distribution, is higher than that of  $C_{12}$ -BRE, which has a broad distribution. On the contrary, the cloud point of narrow  $C_{12}$ -EFME is somewhat lower than that of broad  $C_{12}$ -EFME; so, it seems



**FIG. 3.** Cloud point as function of EO adduct number. See Figures 1 and 2 for abbreviations.



**FIG. 4.** Phase diagrams of EFME, AE. A: narrow C<sub>12</sub>-EFME (POE 7.3) Reference 6; B: narrow C<sub>12</sub>-EFME (POE 9.3) Reference 6; C: broad C<sub>12</sub>-EFME (POE 8.0); D: C<sub>12</sub>-NRE (POE 8.6). L<sub>1</sub> = micellar solution; I<sub>1</sub> = small micelle cubic phase; H<sub>1</sub> = hexagonal phase; L<sub> $\alpha$ </sub> = lamellar phase; S = hydrated solid; W = dilute surfactant solution. See Figures 1 and 2 for abbreviations.

that the effect of EO adduct distribution on the cloud point of EFME is opposite to that of AE.

Phase diagram. Figure 4 A–D shows phase diagrams for narrow C<sub>12</sub>-EFME (POE 7.3 and 9.3) (6), broad C<sub>12</sub>-EFME (POE 8.0), and C<sub>12</sub>-NRE (POE 8.6). The gelling regions (H, hexagonal phase) for narrow C<sub>12</sub>-EFME (Fig. 4A and 4B) are noticably smaller than those of C<sub>12</sub>-NRE (Fig. 4D). Therefore, EFME retains good liquid properties within a wider range of concentration and temperature compared to AE. Also, the gelling regions of narrow C<sub>12</sub>-EFME (Fig. 4A and 4B) are smaller than those of broad C<sub>12</sub>-EFME (Fig. 4A.

phase (S) than broad  $C_{12}$ -EFME. For a more detailed study of the relationship between molecular structure and gellation, phase diagrams of monodispersed octaoxyethylene dodecylether ( $C_{12}$ -SRE) (9), methoxyoctaoxyethylene dodecylether ( $C_{12}$ -SRE-Me; the terminal hydroxyl of the EO chain was blocked by a methyl group) (10), and narrow  $C_{12}$ -EFME were compared, respectively. As shown in Figure 5, the  $L_{\alpha}$  and  $V_1$ phases (A) disappear when the terminal hydroxyl of the EO chain by a methyl group is blocked by a methyl group (B). The  $I_1$  phase (Fig. 5A and 5B) is not present in Figure 5C, perhaps due to the ester linkage. Therefore, it is conceivable that narrow  $C_{12}$ -EFME has a smaller liquid crystal (gelling)







**FIG. 6.** Initial foam height (foaming ability) as function of EO adduct number. See Figures 1 and 2 for abbreviations.

region because it is difficult for narrow  $C_{12}$ -EFME to have compact molecular orientation on account of the double effect of the terminal methyl group and ester bond in the molecule.

Foaming ability and foam stability. Figure 6 shows the initial foam height data from the Ross-Miles method. Foaming ability of narrow  $C_{12}$ -EFME is below that of  $C_{12}$ -NRE but higher compared to  $C_{12}$ -BRE or broad  $C_{12}$ -EFME. The presence of the terminal methyl group and ester bond may lower



**FIG. 7.** Foam stability (foam-breaking) as function of EO adduct number. See Figures 1 and 2 for abbreviations.



**FIG. 8.** Surface tension as function of concentration for four different samples. See Figures 1 and 2 for abbreviations.

the foaming ability. The foaming ability of narrow  $C_{12}$ -EFME is better compared to the broad  $C_{12}$ -EFME due to the narrow EO adduct distribution.

Figure 7 shows foam stability. Narrow  $C_{12}$ -EFME and  $C_{12}$ -NRE have lower foam stability than broad  $C_{12}$ -EFME and  $C_{12}$ -BRE. For broad  $C_{12}$ -EFME or  $C_{12}$ -BRE, unreacted raw material and the fractions with fewer EO units tend to hinder foam breaking.



FIG. 10.  $\gamma_{CMC}$  value as function of EO adduct number. See Figures 1 and 2 for abbreviations.

Ability to lower surface tension. Figure 8 shows surface tension curves for those samples whose average EO adduct number is 15. Figures 9 and 10 show CMC and  $\gamma_{CMC}$  values calculated by the Gibbs adsorption equation, respectively. To aid the reader in using these data in the future, the values are summarized in Table 2. The CMC value of C<sub>12</sub>-BRE is somewhat lower than those of C<sub>12</sub>-NRE and C<sub>12</sub>-EFME. The  $\gamma_{CMC}$  values for C<sub>12</sub>-BRE and narrow C<sub>12</sub>-EFME are similar and



**FIG. 9.** Critical micelle concentration (CMC) value as function of EO adduct number. See Figures 1 and 2 for abbreviations.

| IABLE 2                |         |         |                     |
|------------------------|---------|---------|---------------------|
| CMC and $\gamma_{CMC}$ | Value o | of Each | Sample <sup>a</sup> |

|                              | POE | CMC (mM) | $\gamma_{CMC}$ (mN/m) |
|------------------------------|-----|----------|-----------------------|
| Narrow C <sub>12</sub> -EFME | 6   | 0.088    | 29.5                  |
| 12                           | 8   | 0.102    | 31.7                  |
|                              | 9   | 0.117    | 33.4                  |
|                              | 12  | 0.152    | 36.2                  |
|                              | 15  | 0.160    | 38.6                  |
| Broad C <sub>12</sub> -EFME  | 6   | 0.099    | 32.7                  |
| 12                           | 8   | 0.114    | 31.4                  |
|                              | 11  | 0.124    | 31.3                  |
|                              | 15  | 0.136    | 32.0                  |
| C <sub>12</sub> -NRE         | 7   | 0.083    | 33.0                  |
|                              | 9   | 0.085    | 34.8                  |
|                              | 12  | 0.097    | 37.2                  |
|                              | 15  | 0.159    | 40.1                  |
| C <sub>12</sub> -BRE         | 7   | 0.029    | 30.3                  |
| 12                           | 9   | 0.042    | 32.4                  |
|                              | 12  | 0.042    | 37.1                  |
|                              | 15  | 0.042    | 38.5                  |

<sup>a</sup>CMC, critical micelle concentration. See Table 1 for other abbreviations.





**FIG. 11.** Interfacial tension (vs. *n*-decane) as function of EO adduct number. See Figures 1 and 2 for abbreviations.

increase with increasing EO content. In contrast, the  $\gamma_{CMC}$  value of broad C<sub>12</sub>-EFME is generally lower than the others and is little affected by increasing EO content.

Ability to lower interfacial tension. Figures 11 to 13 show interfacial tension values for each sample under oil phases of *n*-decane, oleic acid and triolein, respectively. While each sample shows the similar ability to lower the aqueous interfacial tension with respect to oleic acid, the ability to lower in-

**FIG. 13.** Interfacial tension (vs. triolein) as function of EO adduct number. See Figures 1 and 2 for abbreviations.

terfacial tension by narrow C<sub>12</sub>-EFME with *n*-decane and triolein are somewhat lower compared to broad C<sub>12</sub>-EFME, C<sub>12</sub>-NRE, and C<sub>12</sub>-BRE in the range of small average EO adduct number. However, the performance of narrow C<sub>12</sub>-EFME increases as the average EO level increases.

*Wettability*. Figure 14 shows the result of wettability measurements. While narrow  $C_{12}$ -EFME and  $C_{12}$ -NRE show similar wettability, wettability of broad  $C_{12}$ -EFME and  $C_{12}$ -BRE



**FIG. 12.** Interfacial tension (vs. oleic acid) as function of EO adduct number. See Figures 1 and 2 for abbreviations.



**FIG. 14.** Wetting time (wettability) as function of EO adduct number. See Figures 1 and 2 for abbreviations.



**FIG. 15.** Solubilization (solubilizate: Yellow OB) as function of EO adduct number. See Figures 1 and 2 for abbreviations.

are somewhat inferior. As wettability tends to decrease with higher average EO adduct number, which results in higher hydrophilicity, fractions of large EO adduct number in broad  $C_{12}$ -EFME and  $C_{12}$ -BRE are considered to hinder wetting.

Solubilization. Figure 15 shows the solubilization in each sample by using Yellow OB as solubilizate. In the range of higher average EO adduct number, solubilization of dye with  $C_{12}$ -EFME is a little lower than that of  $C_{12}$ -NRE and  $C_{12}$ -BRE. Reasoning for this may be that the terminal methyl group of  $C_{12}$ -EFME hinders the transfer of Yellow OB

into the micelles. In the range of lower average EO adduct number, however, both EFME and AE show similar solubilization.

# REFERENCES

- 1. Hama, I., T. Okamoto, H. Sasamoto, and H. Nakamura, Japanese Patent JP6-277016A (1994).
- Hama, I., T. Okamoto, and H. Nakamura, Preparation and Properties of Ethoxylated Fatty Methyl Ester Nonionics, *J. Am. Oil Chem. Soc.* 72:781–784 (1995).
- Hama, I., H. Sasamoto, and T. Okamoto, Influence of Catalyst Structure on Direct Ethoxylation of Fatty Methyl Esters over Al-Mg Composite Oxide Catalyst, *Ibid.* 74:817–822 (1997).
- 4. Hama, I., M. Sakaki, and H. Sasamoto, Effects of Ethoxylate Structure on Surfactant Properties of Ethoxylated Fatty Methyl Esters, *Ibid.* 74:823–827 (1997).
- 5. Nakamura, H., Y. Nakamoto, and Y. Fujimori, Japanese Patent JP1-164437A (1989).
- Fujiwara, M., M. Miyake, and I. Hama, Phase Behavior of Methoxypolyoxyethylene Dodecanoate as Compared to Polyoxyethylene Dodecylether and Polyoxyethylene Methyl Dodecylether, *Colloid Polym. Sci.* 272:797–802 (1994).
- Japanese Industrial Standards Committee, Japanese Industrial Standard K3362-1990, *Testing Methods of Synthetic Detergent*, Japanese Standards Association, Tokyo, 1990, pp. 49.
- Nishikido, N., Mixed Micelles of Polyoxyethylene-Type Nonionic and Anionic Surfactants in Aqueous Solutions, *J. Colloid Interface Sci.* 60:242–251 (1977).
- Mitchell, D.J., G.J.T. Tiddy, L. Waring, T. Bostock, and M.P. McDonald, Phase Behaviour of Polyoxyethylene Surfactants with Water, J. Chem. Soc. Faraday Trans. 79:975–1000 (1983).
- Conroy, J.P., C. Hall, C.A. Leng, K. Rendall, G.J.T. Tiddy, J. Walsh, and G. Lindblom, Nonionic Surfactant Phase Behavior. The Effect of CH<sub>3</sub> Capping on the Terminal OH. Accurate Measurements of Cloud Curves, *Progr. Colloid. Polym. Sci.* 82:253–262 (1990).

[Received January 2, 1997; accepted April 15, 1997]